Elimination of diurnal, annual and 11-year solar variations in the observations of the URAMAN muon hodoscope

R.V. Sidorov¹, I.I. Astapov², A.D. Gvishiani¹, V.G. Getmanov¹, A.N. Dmitrieva², M.N. Dobrovolsky¹, A.A. Kovyljaveva², A.A. Soloviev¹, V.E. Chinkin³, I.I. Yashin²
¹ Geophysical Center of the Russian Academy of Sciences (GC RAS), Russia
² National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russia
E-mail: r.sidorov@gcras.ru

A method for elimination of periodical diurnal, annual and 27-day and 11-year solar variations in the matrix observations of the URAMAN muon hodoscope was developed. The analysis of the parameters of these variations in the time and frequency domains was performed. Two-dimensional bandpass filtering of sequences of muon hodoscope matrix observations was implemented. The structure of a two-dimensional filter is developed, based on the operation of elementwise matrix multiplications and additions. Examples of eliminating variations in the URAMAN muon hodoscope matrix observations are discussed.

1. INTRODUCTION

Two cases analyzed with different resolutions:

- Periodical:
 - Diurnal (due to the Earth’s daily rotation)
 - Annual (due to the Earth’s motion in the solar orbit)
 - Solar, due to 11-year activity cycle
 - Solar, due to 27-day Sun rotation period

- Aperiodical:
 - from Forbush decreases
 - from the atmosphere’s impact

2. URAMAN MUON HODOSCOPE DATA ANALYSIS IN TEMPORAL AND SPECTRAL DOMAINS

Analyzing the oscillatory components in the MH data

- DFT: $C(n) = \sum_{x=0}^{X-1} S(Tx)e^{j\pi nx}$, $n = 0, 1, ..., N - 1$
- Logarithmic spectrum: $LC(n) = 20 \log_{10}|C(n)|$
- Resolution: $\Delta f = 11 NT$
- Two cases analyzed with different resolutions: $T_c = 24 T$, $T_r = 365*24*7$
- $n_t = 2731$ the 1st harmonic number for a diurnal component.
- $n_{a1} = 1$ for the 11-year solar component (for a more accurate spectral analysis of this component, at least 50-100 years needed)
- $n_l = n_t / 27 = 102$ the first harmonic number for the component associated with the rotation of the Sun
- $k_{a1} = 7$, $k_{a1} = 14$ two peaks representing the annual component harmonic

3. TWO-DIMENSIONAL BANDPASS FILTERING FOR MH MATRIX OBSERVATIONS

Butterworth bandpass filtering for each $M_{ij}(i, j; Tk)$: total $N_t N_{a1}$ operations; weight coefficients $b_{ij}(i, j; r=1, ..., n_t; s=0, ..., n_a)$

$M_{ij}(i, j; Tk) = \sum_{r=0}^{n_t} \sum_{s=0}^{n_a} a_{ij}(i, j; r, s) M_{ij}(i, j; T(k-r) + s) - \sum_{r=0}^{n_t} \sum_{s=0}^{n_a} b_{ij}(i, j; r, s) M_{ij}(i, j; T(k-r) - s)$

Two-stage filtering approach

1) Two-dimensional filter based on one-dimensional difference eq.; elementwise matrix multiplication applied

$M_{ij}(Tk) = \sum_{r=0}^{n_t} B_r M_{ij}(T(k-r)) + \sum_{s=0}^{n_a} A_s M_{ij}(T(k-s))$

2) Elimination of phase shifts:

$S_{ij}(Tk) = \frac{1}{N_t N_{a1}} \sum_{r=0}^{n_t} \sum_{s=0}^{n_a} M_{ij}(i, j; Tk)r$

Functional $F(S, S_{ij}, k) = \min_{k=1}^{2731} \left(S(Tk) - S_{ij}(Tk - k) \right)^2$ minimization:

$k_{a1} = \arg\min_{k=1}^{2731} F(S, S_{ij}, k)$, $M_{ij}(i, j; Tk) = M_{ij}(i, j; T(k-k_{a1}))$

4. TESTING THE METHOD OF TWO-DIMENSIONAL BANDPASS FILTERING ON URAGAN MATRIX DATA

The elimination of diurnal variations:

- original averaged muon flux intensity (black) and the filtered one (red)

The final elimination of 11-year variations, solar 27-day and 11-year variations: only aperiodic MF variations left.

The proposed method for eliminating periodic diurnal, annual, and solar variations in the matrix observations of the URAMAN muon hodoscope based on two-dimensional band-pass filtering appeared to be workable. It is established on the basis of computational experiments that: the time costs of the proposed filtering method, with appropriate ratios of parameters, are on average 3-10 times less than the time spent for filtering on the basis of one-dimensional filters; phase shift correction errors are of the order of 1-2 degrees. The method can be applied to many problems of experimental physics, associated with the elimination in the sequences of matrix observations of the components of periodic variations.

2nd International Symposium on Cosmic Rays and Astrophysics (ISCRA 2019)
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) 25-28 June 2019