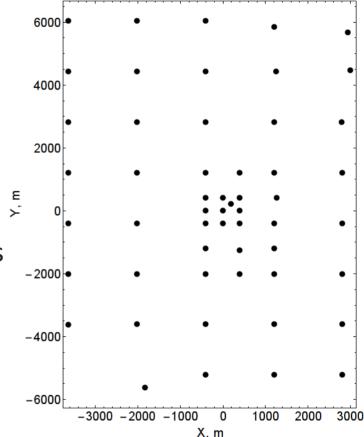


J. A. Bellido, R. W. Clay, N. N. Kalmykov, I. S. Karpikov, G. I. Rubtsov, S. V. Troitsky, J. Ulrichs

Analysis of the muon component of extensive air showers in the SUGAR data.

Introduction and motimation


- 1 Discrepancies between theoretical models and real EAS data: muon excess, see e.g. [arXiv:1609.05764]
- 2 How does an muons excess depend on EAS parameters?
- primary energy
- primary composition
- distance to the shower core (the LDF shape)
- zenith angle
- muon energy threshold

To study the dependence of the muon excess on the EAS parameters, an installation with a muon detector is required

SUGAR array

- operated between 1968 and 1979
- located near the town of Narrabri in New South Wales, Australia, and altitude~250 m above sea level
- area of about 70 km² and consisted of 54 underground detector stations
- each detector station had two liquid-scintillator tanks 50 m apart in the North-South direction, buried at the depth varying within 1.5±0.3 m
- The effective area of each scintillator tank was 6.0 m^2
- threshold energy for detected muons was (0.75 ± 0.15) sec $(\theta\mu)$ GeV

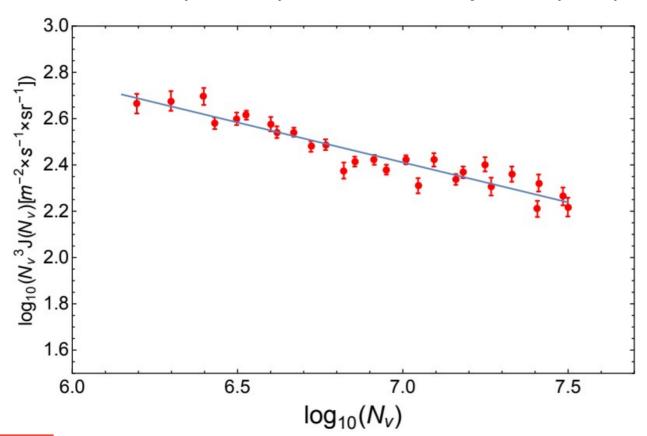
ISCRA-2019

SUGAR muon LDF and vertical muon number

muon lateral distribution function (LDF)

$$\rho_{\mu} = N_{\mu} k(\theta) \left(\frac{r}{r_{0}}\right)^{-a} \left(1 + \frac{r}{r_{0}}\right)^{-b}$$

where r_0 =320m, a=0.75, b =1.5+1.86*cos(θ), k(θ) = Γ (b)/(2*Pi* r_0 2 Γ (2-a) Γ (a+b-2)), **N_u** - **muon number**


- In SUGAR data $\,N_{\mu}\,$ was determined by fitting individual detector readings
- for each observed EAS with a reconstructed N_{μ} and θ , the number of vertical muons N_{ν} was determined by the expression

$$\log(\frac{N_{v}}{N_{r}}) = \frac{(1 - \gamma_{v} - A(\cos(\theta) - 1))\log(\frac{N_{\mu}}{N_{r}}) + B(\cos(\theta) - 1) + \log\frac{1 - \gamma_{v}}{1 - \gamma_{v} - A(\cos(\theta) - 1)}}{1 - \gamma_{v}}$$

SUGAR differential vertical muon number spectrum

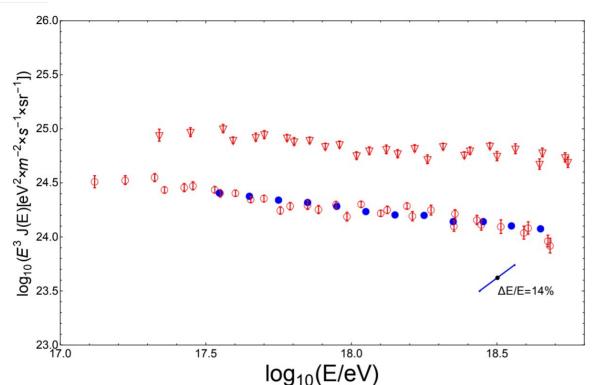
We use the spectrum presented in J. Phys. G12(1986) 653.

Primary energy E is related to $\mathbf{N}_{\mathbf{v}}$

by the following expression

$$E(N_{v}) = E_{r}(\frac{N_{v}}{N_{r}})$$

$$E_r = 1.64 \times 10^{18} \, eV$$


$$\alpha$$
= 1.075.

$$N_{\rm r} = 10^7$$

(Hillas model)

Comparison of energy spectra SUGAR and Auger

Blue circles - the Auger differential combined energy spectrum arXiv:1708.06592

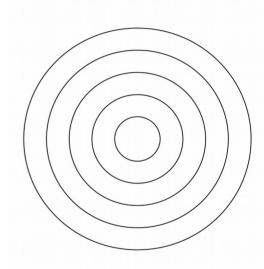
Red triangles — SUGAR old differential energy spectrum estimated using the Hillas model

Red circles this work -SUGAR differential energy spectrum estimated using the empirical E(Nv) relation

$$E_{\rm r} = (8.67 \pm 0.21_{\rm stat} \pm 0.26_{\rm syst~SUGAR} \pm 1.21_{\rm syst~Auger}) \times 10^{17} \text{ eV},$$

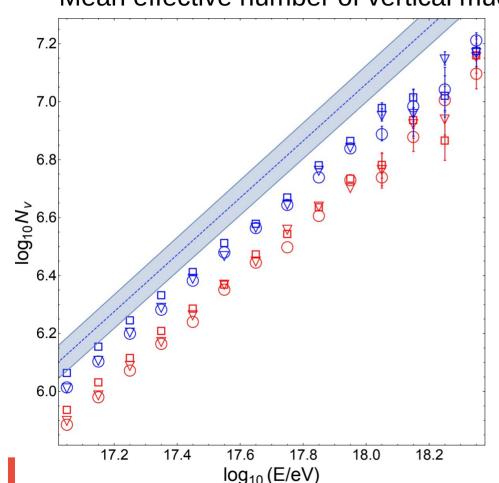
$$\alpha = 1.018 \pm 0.0042_{\rm stat} \pm 0.0043_{\rm syst~SUGAR} \pm 0.0028_{\rm syst~Auger},$$

Monte Carlo simulation


- CORSIKA7.4001
- QGSJET-II-04, EPOS-LHC and SYBYLL-2.3c as high-energy hadronic interaction models
- FLUKA2011.2c[27] as the low-energy hadronic interaction models
- primary energies following an $E^-3.19$ differential spectrum
- energy range 9×10^16 eV< E $<4\times10^18$ eV.
- θ in the range between 0 and 75 degrees
- thinning parameter $\varepsilon = 10^-5$
- particles within 100 m from the core were discarded
- For each hadronic interaction models, we simulated 10000 showers for primary protons and the same number of showers for primary iron.

Monte Carlo simulation

- calculate the muon density in concentric rings around the shower axis
- we use the experimental muon LDF and fit the muon density distribution in MC for obtaining $N\mu$
- for each artificial shower with the $N\mu$ and the $\theta,$ we obtain the number of vertical muons N_v


- experimental reconstruction errors in determining the shower axis and 50 m and 2.6 degrees
- use this errors and our toy MC we we estimated the error in determining $N\mu$ = 19%

Comparison of number muons in observe data to simulation

Mean effective number of vertical muons Nv as a function of the primary energy.

The dashed blue line corresponds to our empirical model.

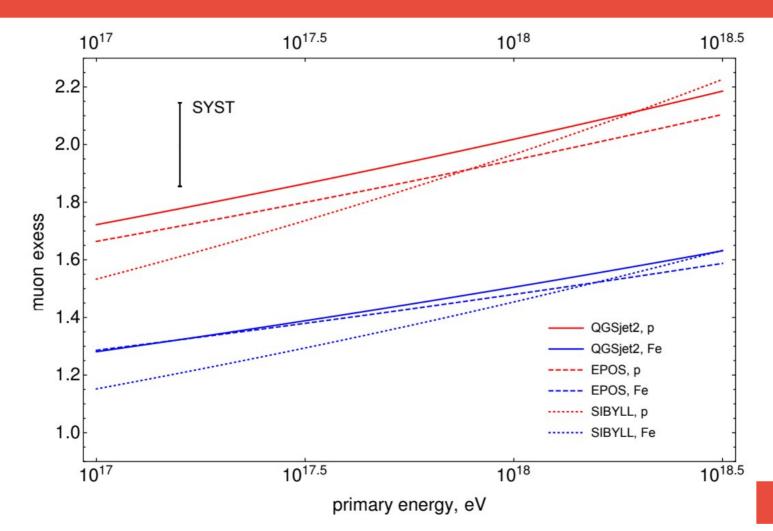
The shaded blue area indicates the total uncertainly.

QGSJET-II-04 (protons - red open circles, iron - blue open circles),

EPOS-LHC (protons - red open triangles, iron - blue open triangles,)

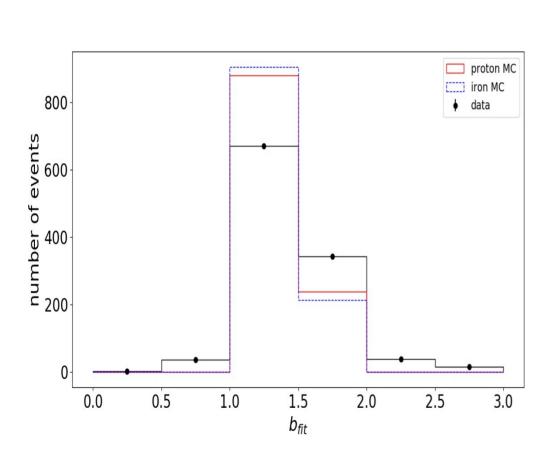
SIBYLL-2.3c (protons - red open quares, iron - blue open quares)

ISCRA-2019



Muon excess vs primary energy E

	$\frac{N_{v}}{N_{v}^{MC}} = \left(\frac{N_{v}}{N_{v}^{MC}}\right)_{0} \left(\frac{E}{E_{0}}\right)^{q}$	E ₀ =10 ¹⁷ eV
Simulation	$\left(N_{ m v}/N_{ m v}^{ m MC} ight)_0$	q
QGSJET-II-04 protons	$1.722 \pm 0.036_{\rm stat} \pm 0.253_{\rm syst}$	$0.069 \pm 0.016_{\rm stat} \pm 0.007_{\rm syst}$
QGSJET-II-04 iron	$1.281 \pm 0.011_{\rm stat} \pm 0.188_{\rm syst}$	$0.070 \pm 0.006_{\rm stat} \pm 0.007_{\rm syst}$
EPOS-LHC protons	$1.664 \pm 0.027_{\rm stat} \pm 0.244_{\rm syst}$	$0.068 \pm 0.012_{\rm stat} \pm 0.007_{\rm syst}$
EPOS-LHC iron	$1.285 \pm 0.013_{\rm stat} \pm 0.189_{\rm syst}$	$0.061 \pm 0.008_{\rm stat} \pm 0.007_{\rm syst}$
${\it SIBYLL-2.3c}$ protons	$1.533 \pm 0.014_{\rm stat} \pm 0.225_{\rm syst}$	$0.108 \pm 0.007_{\rm stat} \pm 0.007_{\rm syst}$
SIBYLL-2.3c iron	$1.152 \pm 0.015_{\rm stat} \pm 0.169_{\rm syst}$	$0.101 \pm 0.010_{\rm stat} \pm 0.007_{\rm syst}$
_		ISCRA



Muon excess vs primary energy E

Comparison of slope LDF in observe data and simulation

$$\rho_{\mu} = N_{\mu} k(\theta) (\frac{r}{r_0})^{-a} (1 + \frac{r}{r_0})^{-a}$$
 where $r_0 = 320 \text{m}$, $a = 0.75$, $b = b_{\text{fit}} + 1.86 * \cos(\theta)$

The experimental **b**_{fit} is determined by fitting the observed response of the detectors of events in which 5 or more stations triggered.

Out of 13716 events we use 3653 events for analysis

Comparison of slope LDF in observe data and simulation

Value of parameter b_{fit} in experimental data and modeling.

	b_{fit}
data	1.45 ± 0.07
QGSJET-II-04 protons	1.46 ± 0.07
QGSJET-II-04 iron	1.44 ± 0.07
EPOS-LHC protons	1.46 ± 0.07
EPOS-LHC iron	1.43 ± 0.07
SIBYLL-2.3c protons	1.47 ± 0.07
SIBYLL-2.3c iron	1.44 ± 0.07

Conclusions and perspectives

- we obtained an empirical relation between the number of muons in anextensive air shower and the primary energy
 N mu(E primary), for energies 10^17 - 10^18.5 eV
- we found the excess of muons in real air showers with respect to simulation
- we found the dependence of muon excess on the primary energy
- In addition, we estimated the slope of the LDF for the experimental data and in the simulation, the difference turned out to be insignificant.

Thank you for your attention

excessive consumption of sugar harms your health