QGSJET-III: physics, hadron production, and applications for high energy CR studies

Sergey Ostapchenko
Frankfurt Institute for Advanced Studies

ISCRA-2019
Moscow, June 25-28, 2019
Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering
 (many cascades in parallel)
- real cascades ⇒ particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics ⇒ phenomenological approaches
Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades \Rightarrow particle production
- virtual cascades \Rightarrow elastic rescattering (momentum transfer)
- generally nonperturbative physics \Rightarrow phenomenological approaches
Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering
 (many cascades in parallel)
- real cascades \Rightarrow particle production
- virtual cascades \Rightarrow elastic rescattering (momentum transfer)
- generally nonperturbative physics
 \Rightarrow phenomenological approaches

But: universal interaction mechanism \Rightarrow predictive power

- different hadrons (nuclei) \Rightarrow different initial conditions
 (parton Fock states) but same mechanism
Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades \Rightarrow particle production
- virtual cascades \Rightarrow elastic rescattering (momentum transfer)
- generally nonperturbative physics \Rightarrow phenomenological approaches

But: universal interaction mechanism \Rightarrow predictive power

- different hadrons (nuclei) \Rightarrow different initial conditions (parton Fock states) but same mechanism
- energy-evolution of the observables (e.g. σ_{pp}^{tot}): due to a larger phase space for cascades to develop
Qualitative picture for hadronic MC event generators

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades ⇒ particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics ⇒ phenomenological approaches

But: universal interaction mechanism ⇒ predictive power

- different hadrons (nuclei) ⇒ different initial conditions (parton Fock states) but same mechanism
- energy-evolution of the observables (e.g. $\sigma_{p\bar{p}}^{\text{tot}}$): due to a larger phase space for cascades to develop
- ⇒ smooth energy-dependence for all the observables
Soft interactions & Reggeon Field Theory (RFT)

- nonperturbative soft (small p_t) interactions: successfully treated by RFT [Gribov, 1967]
 - Quark-Gluon String Model [Kaidalov & Ter-Martyrosian, 1982]
Soft interactions & Reggeon Field Theory (RFT)

- nonperturbative soft (small p_t) interactions: successfully treated by RFT [Gribov, 1967]
 - Quark-Gluon String Model [Kaidalov & Ter-Martirosian, 1982]

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)

- allows to calculate: cross sections & partial probabilities of final states
nonperturbative soft (small p_t) interactions: successfully treated by RFT [Gribov, 1967]

Quark-Gluon String Model [Kaidalov & Ter-Martirosyan, 1982]

multiple scattering = multi-Pomeron exchanges (multiple parton cascades)

allows to calculate: cross sections & partial probabilities of final states

\[
\sigma_{pp}^{\text{tot}}(s, b) = 2 \int d^2b \left[1 - e^{-\chi_{pp}^p(s,b)} \right]
\]

\[
\sigma_{pp}^{\text{inel}}(s, b) = \int d^2b \left[1 - e^{-2\chi_{pp}^p(s,b)} \right]
\]
Soft interactions & Reggeon Field Theory (RFT)

- nonperturbative soft (small p_t) interactions: successfully treated by RFT [Gribov, 1967]
 - Quark-Gluon String Model [Kaidalov & Ter-Martirosian, 1982]

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)

- allows to calculate: cross sections & partial probabilities of final states

\[
\sigma_{pp}^{\text{tot}}(s, b) = 2\int d^2b \left[1 - e^{-\chi_{pp}^p(s, b)} \right]
\]

\[
\sigma_{pp}^{\text{inel}}(s, b) = \int d^2b \left[1 - e^{-2\chi_{pp}^p(s, b)} \right]
\]

- particle production: hadronization of quark-gluon strings
Soft interactions & Reggeon Field Theory (RFT)

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

\[s_{\text{tot}}^{pp}(s, b) = \frac{2}{Z^2 b} \left[1 - e^{-c_{P}^{pp}(s, b)} \right] \]
\[s_{\text{inel}}^{pp}(s, b) = \frac{Z^2 b}{2} \left[1 - e^{-2c_{P}^{pp}(s, b)} \right] \]

Particle production: hadronization of quark-gluon string

Involves minimal number of adjustable parameters
(to describe Pomeron exchange eikonal \(\chi_{pp}^{P}(s, b) = \text{Im} f_{pp}^{P}(s, b) \))

\[\chi_{pp}^{P}(s, b) = \frac{\gamma_p^2 s^{\alpha_{P}(0)-1}}{2R_p^2 + \alpha'_{P}(0) \ln s} \exp \left(\frac{-b^2 / 4}{2R_p^2 + \alpha'_{P}(0) \ln s} \right) \]

- Pomeron intercept \(\alpha_{P}(0) > 1 \) ⇒ energy rise of parton density
- Pomeron slope \(\alpha'_{P}(0) \) ⇒ parton transverse diffusion
- \(R_p \) characterizes proton size & \(\gamma_p \) – soft interaction strength
Soft interactions & Reggeon Field Theory (RFT)

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal $\chi_{pp}(s, b) = \text{Im} f_{pp}^2(s, b)$)

$$\chi_{pp}(s, b) = \frac{\gamma_p^2 s^{\alpha_p(0) - 1}}{2R_p^2 + \alpha'_p(0) \ln s} \exp \left(\frac{-b^2/4}{2R_p^2 + \alpha'_p(0) \ln s} \right)$$

- Pomeron intercept $\alpha_p(0) > 1 \Rightarrow$ energy rise of parton density
- Pomeron slope $\alpha'_p(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p – soft interaction strength
- plus 2 parameters for πp (R_π & γ_π) and 2 more for Kp
Soft interactions & Reggeon Field Theory (RFT)

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal $\chi_{pp}(s,b) = \text{Im} f_{pp}^P(s,b)$)

$$\chi_{pp}^P(s,b) = \frac{\gamma_p^2 s^{\alpha_P(0)-1}}{2R_p^2 + \alpha'_P(0) \ln s} \exp \left(\frac{-b^2/4}{2R_p^2 + \alpha'_P(0) \ln s} \right)$$

- Pomeron intercept $\alpha_P(0) > 1 \Rightarrow$ energy rise of parton density
- Pomeron slope $\alpha'_P(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p – soft interaction strength
- plus 2 parameters for πp (R_π & γ_π) and 2 more for Kp
- generalization for pA & AA collisions – parameter free
Soft interactions & Reggeon Field Theory (RFT)

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal $\chi_{pp}^P(s, b) = \text{Im} f_{pp}^P(s, b)$)

$$
\chi_{pp}^P(s, b) = \frac{\gamma_p^2 s^{\alpha_P(0) - 1}}{2R_p^2 + \alpha_P'(0) \ln s} \exp \left(\frac{-b^2/4}{2R_p^2 + \alpha_P'(0) \ln s} \right)
$$

- Pomeron intercept $\alpha_P(0) > 1 \Rightarrow$ energy rise of parton density
- Pomeron slope $\alpha_P'(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p – soft interaction strength
- plus 2 parameters for πp (R_π & γ_π) and 2 more for Kp
- generalization for pA & AA collisions – parameter free

NB: N of parameters for hadronization procedures depends on the degree of sophistication (types of secondary hadrons included, etc.)

- optionally, one may use external procedures (e.g. ones tuned to the data on $e^+ e^- \text{ annihilation into hadrons}$)
Soft interactions & Reggeon Field Theory (RFT)

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal \(\chi_{pp}(s, b) = \text{Im} f_{pp}(s, b) \))

\[
\chi_{pp}(s, b) = \frac{\gamma_p^2 s^{\alpha_p(0)-1}}{2R_p^2 + \alpha'_p(0) \ln s} \exp \left(\frac{-b^2/4}{2R_p^2 + \alpha'_p(0) \ln s} \right)
\]

- Pomeron intercept \(\alpha_p(0) > 1 \) \(\Rightarrow \) energy rise of parton density
- Pomeron slope \(\alpha'_p(0) \) \(\Rightarrow \) parton transverse diffusion
- \(R_p \) characterizes proton size & \(\gamma_p \) – soft interaction strength
- plus 2 parameters for \(\pi p \) (\(R_\pi \) & \(\gamma_\pi \)) and 2 more for \(K p \)
- generalization for \(p A \) & \(A A \) collisions – parameter free

NB: additional parameters needed to describe inelastic diffraction

- in QGSM: shower enhancement coefficients (\(C_{pp}, C_{\pi p}, C_{K p} \))
original Gribov’s formulation: assuming small parton p_t-s

\Rightarrow no room for high p_t jets?
original Gribov’s formulation: assuming small parton p_t-s
 \Rightarrow no room for high p_t jets?

average parton p_t in the cascades should rise with energy (k_t-diffusion)
 \Rightarrow energy-dependent Pomeron intercept $\alpha_P(s)$?
 \Rightarrow loss of predictive power
original Gribov’s formulation: assuming small parton p_t-s
 ⇒ no room for high p_t jets?

average parton p_t in the cascades should rise with energy (k_t-diffusion)
 ⇒ energy-dependent Pomeron intercept $\alpha_P(s)$?
 ⇒ loss of predictive power

Alternative: treat hard processes in the RFT framework
 QGSJET [Kalmykov, SO & Pavlov, 1997]
 neXus [Drescher et al., 2001]
 EPOS [Werner et al., 2006; Pierog et al., 2015]
Alternative: treat hard processes in the RFT framework

- soft Pomerons to describe soft (parts of) cascades \((p_t^2 < Q_0^2)\)
 - \(\Rightarrow\) transverse expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together: 'general Pomeron'
 \[
 \chi_{pp}^{\text{tot}}(s, b, Q_0^2) = \chi_{pp}^{\text{P soft}}(s, b) + \chi_{pp}^{\text{P semihard}}(s, b, Q_0^2)
 \]
QGSJET: including hard processes in the RFT framework

- Alternative: treat hard processes in the RFT framework

- soft Pomerons to describe soft (parts of) cascades ($p_t^2 < Q_0^2$)
 \[\Rightarrow \text{transverse expansion governed by the Pomeron slope} \]

- DGLAP for hard cascades

- taken together: 'general Pomeron'

\[\chi_{pp}^{\text{tot}}(s, b, Q_0^2) = \chi_{pp}^{\text{P soft}}(s, b) + \chi_{pp}^{\text{P semihard}}(s, b, Q_0^2) \]
QGSJET: including hard processes in the RFT framework

- Alternative: treat hard processes in the RFT framework

- soft Pomerons to describe soft (parts of) cascades ($p_t^2 < Q_0^2$)
 - \Rightarrow transverse expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together:
 - 'general Pomeron'

$$\chi_{pp}^{\text{tot}}(s, b, Q_0^2) = \chi_{pp}^{\text{P soft}}(s, b) + \chi_{pp}^{\text{P semihard}}(s, b, Q_0^2)$$
QGSJET: including hard processes in the RFT framework

- Alternative: treat hard processes in the RFT framework

- soft Pomerons to describe soft (parts of) cascades ($p_t^2 < Q_0^2$)
 - \Rightarrow transverse expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together: 'general Pomeron'
 \[
 \chi_{pp}^{\text{tot}}(s, b, Q_0^2) = \chi_{pp}^{\text{P soft}}(s, b) + \chi_{pp}^{\text{P semihard}}(s, b, Q_0^2)
 \]
- apart from the Q_0-cutoff, involves 2 more parameters:
 to describe parton distributions in the soft Pomeron
Inelastic diffraction: Good-Walker approach and beyond

- Experimentally: formation of LRG not covered by secondaries
- In many models (e.g. PYTHIA), diffraction is treated independently of ND collisions
Inelastic diffraction: Good-Walker approach and beyond

- Experimentally: formation of LRG not covered by secondaries
- In many models (e.g. PYTHIA), diffraction is treated independently of ND collisions
- But: microscopically, diffractive treatment is closely related to cross sections & ND particle production
 (e.g. higher diffraction ⇒ smaller σ_{pp}^{inel} & longer multiplicity tails)
Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: \(|p⟩ = \sum_i \sqrt{C_i} |i⟩ \)
Inelastic diffraction: Good-Walker approach and beyond

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: $|p\rangle = \sum_i \sqrt{C_i} |i\rangle$

\[p = \frac{\text{in } pp \text{ scattering, those states undergo different absorption:}}{\text{}} \]

$|p\rangle = \sum_i \sqrt{C_i} |i\rangle \rightarrow \sum_i \sqrt{C'_i} |i\rangle = \alpha |p\rangle + \beta |p^*\rangle$
Inelastic diffraction: Good-Walker approach and beyond

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates:

\[\ket{p} = \sum_i \sqrt{C_i} \ket{i} \]

\[p = + + \ldots \]

- in \(pp \) scattering, those states undergo different absorption:
 \[\ket{p} = \sum_i \sqrt{C_i} \ket{i} \rightarrow \sum_i \sqrt{C'_i} \ket{i} = \alpha \ket{p} + \beta \ket{p^*} \]

\[\Rightarrow \] treatment involves interaction eikonals \(\chi_{pp(ij)}^{\text{tot}}(s, b, Q^2) \) for different combinations of such states, e.g.

\[
\sigma_{pp}^{\text{inel}}(s, b) = \sum_{i,j} C_i C_j \int d^2 b \left[1 - e^{-2\chi_{pp(ij)}^{\text{tot}}(s,b)} \right]
\]
Inelastic diffraction: Good-Walker approach and beyond

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates:

\[|p\rangle = \sum_i \sqrt{C_i} |i\rangle \]

in \(pp \) scattering, those states undergo different absorption:

\[|p\rangle = \sum_i \sqrt{C_i} |i\rangle \rightarrow \sum_i \sqrt{C'_i} |i\rangle = \alpha |p\rangle + \beta |p^*\rangle \]

\[\Rightarrow \text{treatment involves interaction eikonals } \chi_{pp}^{\text{tot}}(s, b, Q^2_0) \]

for different combinations of such states, e.g.

\[\sigma_{pp}^{\text{inel}}(s, b) = \sum_{i,j} C_i C_j \int d^2b \left[1 - e^{-2\chi_{pp}^{\text{tot}}(s,b)} \right] \]

for each state \(|i\rangle \): its own size & parton density
Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: \(|p\rangle = \sum_i \sqrt{C_i} |i\rangle \)

\[
p = \begin{tikzpicture}
 \draw[fill=blue!20] (0,0) circle (1cm);
 \draw[fill=blue!60] (2,0) circle (0.5cm);
 \draw[fill=blue!80] (4,0) circle (0.3cm);
 \draw[fill=blue!90] (6,0) circle (0.2cm);
 \end{tikzpicture}
\]

- In \(pp \) scattering, those states undergo different absorption:
 \[
 |p\rangle = \sum_i \sqrt{C_i} |i\rangle \rightarrow \sum_i \sqrt{C_i'} |i\rangle = \alpha |p\rangle + \beta |p^*\rangle
 \]

- \(\Rightarrow \) treatment involves interaction eikonal \(\chi_{pp(ij)}^{\text{tot}}(s, b, Q_0^2) \)
 for different combinations of such states, e.g.

\[
\sigma_{pp}^{\text{inel}}(s, b) = \sum_{i,j} C_i C_j \int d^2 b \left[1 - e^{-2\chi_{pp(ij)}^{\text{tot}}(s, b)} \right]
\]

- for each state \(|i\rangle \): its own size & parton density
- should momentum sum rule be satisfied for each state \(|i\rangle \)
 separately:
 \[
 \sum_{I=q, \bar{q}, g} \int dx x f_{I/p(i)}(x, Q^2) = 1?!
 \]
Problem: for realistic PDFs, both cross sections & multiplicity of produced hadrons rise too steeply with energy
Problem: for realistic PDFS, both cross sections & multiplicity of produced hadrons rise too steeply with energy.

This signals the need to account for nonlinear interaction effects.

When parton density becomes high (high energy and/or small b):

- Parton cascades strongly overlap and interact with each other
- \Rightarrow Shadowing effects (slower rise of parton density)
- Saturation: parton production compensated by fusion of partons
This signals the need to account for nonlinear interaction effects when parton density becomes high (high energy and/or small b):

- parton cascades strongly overlap and interact with each other
- \Rightarrow shadowing effects (slower rise of parton density)
- saturation: parton production

In QGSJET-II: Pomeron-Pomeron interactions (scattering of intermediate partons off the proj./target hadrons & off each other)

- thick lines = Pomerons = 'elementary' parton cascades
- contributions resummed to all orders (sign-altering series)
E.g., \sqrt{s}-dependence of $\sigma_{\text{tot/el}}^{\text{pp/\pi p/Kp}}$ for realistic transverse profiles
QGSJET-II-04: consistent description of $\sigma_{\text{tot/el}}$ & F_2

E.g., \sqrt{s}-dependence of $\sigma_{\text{tot/el}}^{pp/\pi p/K p}$ for realistic transverse profiles

and for PDFs fitting HERA data...
This is nontrivial: not related to parton saturation!

- e.g. factorizable graphs: provide corrections both to $\sigma_{\text{tot/el}}$ & PDFS
- they describe parton rescattering off the parent hadrons
- but they don’t play the major role
This is nontrivial: not related to parton saturation!

- e.g. factorizable graphs: provide corrections both to $\sigma_{\text{tot/el}}$ & PDFS
- they describe parton rescattering off the parent hadrons
- but they don’t play the major role
This is nontrivial, not being related to parton saturation

- nonfactorizable graphs:
 rescattering off the partner hadrons
- have no impact on PDFs & inclusive particle spectra
- but: strongly damp interaction cross sections
nonfactorizable graphs: rescattering off the partner hadrons

have no impact on PDFs & inclusive particle spectra

but: strongly damp interaction cross sections
QGSJET-II-04: consistent description of $\sigma_{\text{tot/el}}$ & F_2

This is nontrivial, not being related to parton saturation

- nonfactorizable graphs: rescattering off the partner hadrons
- have no impact on PDFs & inclusive particle spectra
- but: strongly damp interaction cross sections

Many other models: energy dependent p_t-cutoff for jet production, $p_{t,\text{cut}} = p_{t,\text{cut}}(s)$

- is it reasonable and what kind of physics is behind?
QGSJET-III: treatment of higher twist (HT) effects

Any model should respect collinear factorization of pQCD

\[
\sigma_{pp}^{jet}(s,p_t,\text{cut}) = \sum_{I,J=q,\bar{q},g} \int_{p_t>p_{t,\text{cut}}} dp_t^2 \int dx^+ dx^- \frac{d\sigma_{IJ}^{2-2}(x^+ x^- s, p_t^2)}{dp_t^2} \\
\times f_I/p(x^+, M_F^2) f_J/p(x^-, M_F^2)
\]

\[\Rightarrow \sigma_{pp}^{jet}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}} , \Delta_{\text{eff}} \simeq 0.3\]
QGSJET-III: treatment of higher twist (HT) effects

Any model should respect collinear factorization of pQCD

\[\sigma_{pp}^{jet}(s, p_t, \text{cut}) = \sum_{I,J=q, \bar{q}, g, p_t > p_t, \text{cut}} dp_t^2 \int dx^+ dx^- \frac{d\sigma_{IJ}^2}{dp_t^2} (x^+, x^-, s, p_t^2) \]

\[\times f_I/p(x^+, M_F^2) f_J/p(x^-, M_F^2) \]

\[\Rightarrow \sigma_{pp}^{jet}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \approx 0.3 \]

with PDFS \(f_{I/p}(x, Q^2) \) known from HERA data, no freedom:

\[dN_{\text{ch}} / d\eta \bigg|_{\eta=0} \propto \sigma_{pp}^{jet} \text{ explodes at high energies for small } Q_0^2 \]
QGSJET-III: treatment of higher twist (HT) effects

Any model should respect collinear factorization of pQCD

\[\sigma_{pp}(s, p_t, \text{cut}) = \sum_{I,J=q,\bar{q},g} \int_{p_t>p_{t,\text{cut}}} dp_t^2 \int dx^+ dx^- \frac{d\sigma_{IJ}^{2\rightarrow 2}(x^+ x^- s, p_t^2)}{dp_t^2} \]

\[\times f_{I/p}(x^+, M_F^2) f_{J/p}(x^-, M_F^2) \]

⇒ \[\sigma_{pp}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \approx 0.3 \]

with PDFS \(f_{I/p}(x, Q^2) \) known from HERA data, no freedom: \(dN_{\text{ch}}/d\eta \mid_{\eta=0} \propto \sigma_{pp} \) explodes at high energies for small \(Q_0^2 \)

- in QGSJET-II-04, a rather large value (3 GeV^2) is used
- with the factorization scale \(M_F^2 = p_t^2/4 \), yields \(p_t^{\text{cut}} \approx 3.4 \) GeV
- but: pQCD should work down to \(Q_0 \approx 1 \) GeV?!
Any model should respect collinear factorization of pQCD

\[\sigma_{pp}(s, p_t, \text{cut}) = \sum_{I,J=q,\bar{q},g} \int_{p_t > p_t,\text{cut}} dp_t^2 \int dx^+ dx^- \frac{d\sigma_{ij}^2(x^+x^-s,p_t^2)}{dp_t^2} \times f_{I/p}(x^+, M_F^2) f_{J/p}(x^-, M_F^2) \]

\[\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3 \]

- with PDFS \(f_{I/p}(x, Q^2) \) known from HERA data, no freedom: \(dN_{\text{ch}}/d\eta |_{\eta=0} \propto \sigma_{pp}^{\text{jet}} \) explodes at high energies for small \(Q_0^2 \)
 - in QGSJET-II-04, a rather large value (3 GeV^2) is used
 - with the factorization scale \(M_F^2 = p_t^2/4 \), yields \(p_t^{\text{cut}} \simeq 3.4 \) GeV
 - but: pQCD should work down to \(Q_0 \sim 1 \) GeV?!

- ideally, \(p_t \)-cutoff should be just a technical parameter, without a strong impact on the results
Any model should respect collinear factorization of pQCD

\[
\sigma_{pp}^{\text{jet}}(s, p_t, \text{cut}) = \sum_{I,J=q,\bar{q},g} \int_{p_t>p_{t,\text{cut}}} dp_t^2 \int dx^+ dx^- \frac{d\sigma_{IJ}^{2-2}(x^+ x^- s, p_t^2)}{dp_t^2} \times f_{I/p}(x^+, M_F^2) f_{J/p}(x^-, M_F^2)
\]

\[\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3\]

with PDFS \(f_{I/p}(x, Q^2) \) known from HERA data, no freedom:
\[dN_{\text{ch}}/d\eta|_{\eta=0} \propto \sigma_{pp}^{\text{jet}} \text{explodes at high energies for small } Q_0^2\]

in QGSJET-II-04, a rather large value (3 GeV^2) is used

with the factorization scale \(M_F^2 = p_t^2/4 \), yields \(p_{t,\text{cut}} \simeq 3.4 \text{ GeV} \)

but: pQCD should work down to \(Q_0 \sim 1 \text{ GeV} \)?!

ideally, \(p_t \)-cutoff should be just a technical parameter, without a strong impact on the results

\[\Rightarrow \text{some important perturbative mechanism seems missing}\]
Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

- For small p_t^2, power corrections can be important (being suppressed as $1/(p_t^2)^n)$
Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

- for small p_t^2, power corrections can be important (being suppressed as $1/(p_t^2)^n$)
- promising: corrections due to parton rescattering on 'soft' ($x \simeq 0$) gluons [Qiu & Vitev, 2004, 2006]
 - hard scattering involves any number of additional gluon pairs
Phenomenological approaches: higher twist (HT) effects

Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

- for small p_t^2, power corrections can be important (being suppressed as $1/(p_t^2)^n$)
- promising: corrections due to parton rescattering on 'soft' ($x \simeq 0$) gluons [Qiu & Vitev, 2004, 2006]
 - hard scattering involves any number of additional gluon pairs

QGSJET-III: phenomenological implementation of the mechanism

- with HT effects: dependence on Q_0-cutoff strongly reduced [SO & Bleicher, 2019]
- now: twice smaller cutoff for hard processes ($Q_0^2 = 1.5$ GeV2)
Phenomenological approaches: higher twist (HT) effects

QGSJET-III: phenomenological implementation of the mechanism
- with HT effects: dependence on Q_0-cutoff strongly reduced
 \cite{SO&Bleicher, 2019}
- now: twice smaller cutoff for hard processes ($Q_0^2 = 1.5$ GeV2)

Impact on \sqrt{s}-dependence of $\sigma_{pp}^{\text{tot/el}}$

- significant corrections for total/elastic cross sections
- start to be important already at $\sqrt{s} \sim 1$ TeV
Phenomenological approaches: higher twist (HT) effects

Impact on charged hadron multiplicity & p_t-spectra

- Reduction of N_{ch}: stronger at higher energies
- Mostly for moderately small p_t:
 - The effect fades away for increasing p_t ($\propto 1/p_t^2$)
Phenomenological approaches: higher twist (HT) effects

Impact on charged hadron multiplicity & p_t-spectra

- reduction of N_{ch}: stronger at higher energies
- mostly for moderately small p_t:
 the effect fades away for increasing p_t ($\propto 1/p_t^2$)
Phenomenological approaches: higher twist (HT) effects

QGSJET-III: phenomenological implementation of the mechanism
- with HT effects: dependence on Q_0-cutoff strongly reduced
 [SO & Bleicher, 2019]
 - now: twice smaller cutoff for hard processes ($Q_0^2 = 1.5$ GeV2)

Results for air showers: preliminary and close to QGSJET-II-04
- e.g. difference for N_μ – at percent level
Phenomenological approaches: higher twist (HT) effects

QGSJET-III: phenomenological implementation of the mechanism

- with HT effects: dependence on Q_0-cutoff strongly reduced

 [SO & Bleicher, 2019]

 - now: twice smaller cutoff for hard processes ($Q_0^2 = 1.5 \text{ GeV}^2$)

NB: qualitatively, the approach mimics an energy dependent p_t-cutoff for jet production

- suppresses emission of jets of moderately small p_t
- has no impact on PDFs \Rightarrow not related to parton saturation
QGSJET-III: number of adjustable parameters

- basic treatment (pp, πp, Kp): 15
 (soft & hard interactions; low mass diffraction)
- nonlinear effects (Pomeron-Pomeron interactions): 1
- higher twist effects: 1
- hadronization parameters: < 20
QGSJET-III: number of adjustable parameters

- basic treatment ($pp, \pi p, Kp$): 15
 (soft & hard interactions; low mass diffraction)
- nonlinear effects (Pomeron-Pomeron interactions): 1
- higher twist effects: 1
- hadronization parameters: < 20
QGSJET-III: number of adjustable parameters

- basic treatment ($pp, \pi p, Kp$): 15
 (soft & hard interactions; low mass diffraction)
- nonlinear effects (Pomeron-Pomeron interactions): 1
- higher twist effects: 1
- hadronization parameters: < 20
QGSJET-III: number of adjustable parameters

- basic treatment ($pp, \pi p, Kp$): 15
 (soft & hard interactions; low mass diffraction)
- nonlinear effects (Pomeron-Pomeron interactions): 1
- higher twist effects: 1
- hadronization parameters: < 20
- but: based on phenomenological approaches
 ⇒ the model is overconstrained
QGSJET-III: number of adjustable parameters

- basic treatment \((pp, \pi p, Kp)\): 15
 (soft & hard interactions; low mass diffraction)
- nonlinear effects (Pomeron-Pomeron interactions): 1
- higher twist effects: 1
- hadronization parameters: \(< 20\)

⇒ the model is overconstrained

Generally: present models of hadronic collisions
– rather involved but largely phenomenological

⇒ no wonder models differ from each other

however: predictions now strongly constrained by LHC data
 (using a particular model framework)
Air shower characteristics & hadronic interactions

CR composition studies – most dependent on interaction models

- e.g. predictions for X_{max}: on the properties of the primary particle interaction ($\sigma_{p-\text{air}}^{\text{inel}}, \sigma_{p-\text{air}}^{\text{diff}}, K_{p-\text{air}}^{\text{inel}}$)

- predictions for muon density: on secondary particle interactions (cascade multiplication); mostly on $N_{\pi-\text{air}}^{\text{ch}}$
Air shower characteristics & hadronic interactions

Why different model predictions for X_{max}?

- $\sigma_{p-\text{air}}^{\text{inel}}$ – constrained by LHC studies of pp collisions
- uncertainties for $\sigma_{p-\text{air}}^{\text{dissr}}$: small impact (< 10 g/cm²) [SO, 2014]
- what about $K_{p-\text{air}}^{\text{inel}}$?
Initial state emission (ISE) of partons doesn’t stop at the Q_0-cutoff

- it is extended into nonperturbative region by the soft Pomeron
- this changes the structure of constituent parton Fock states (represented by end-point partons in ISE)
 - in QGSJET(-II): described by Reggeon asymptotics ($\propto x^{-\alpha_R(0)}$, $\alpha_R(0) \simeq 0.5$)
Initial state emission (ISE) of partons doesn’t stop at the Q_0-cutoff

- it is extended into nonperturbative region by the soft Pomeron
- this changes the structure of constituent parton Fock states (represented by end-point partons in ISE)
 - in QGSJET(-II): described by Reggeon asymptotics ($\propto x^{-\alpha_R(0)}$, $\alpha_R(0) \approx 0.5$)
- ⇒ observables consequences:
 - softer forward spectra (energy sharing between constituent partons)
 - forward & central particle production - strongly correlated (more activity in central detectors ⇒ larger Fock states ⇒ softer forward spectra)
Structure of constituent parton Fock states

Initial state emission (ISE) of partons doesn’t stop at the Q_0-cutoff

- it is extended into nonperturbative region by the soft Pomeron
- this changes the structure of constituent parton Fock states (represented by end-point partons in ISE)
 - in QGSJET(-II): described by Reggeon asymptotics ($\propto x^{-\alpha_R(0)}$, $\alpha_R(0) \approx 0.5$)
- \Rightarrow observables consequences:
 - softer forward spectra (energy sharing between constituent partons)
 - forward & central particle production - strongly correlated

Alternative (SIBYLL & PYTHIA): no “soft preevolution”

- \Rightarrow multiple scattering has small impact on forward spectra
 - Feynman scaling for forward production
 - forward & central production – decoupled from each other
Of importance for cosmic ray studies: \sqrt{s}-dependence of K_{pp}^{inel}

- SIBYLL & PYTHIA: weak energy dependence of the nucleon 'inelasticity' (for increasing \sqrt{s}, mostly rise of central production)
- smaller $K^{\text{inel}} \Rightarrow$ stronger 'leading particle' effect
- \Rightarrow slower development of CR-induced air showers
Structure of constituent parton Fock states

Of importance for cosmic ray studies: \sqrt{s}-dependence of K_{pp}^{inel}

- SIBYLL & PYTHIA: weak energy dependence of the nucleon 'inelasticity' (for increasing \sqrt{s}, mostly rise of central production)
- smaller $K^{\text{inel}} \Rightarrow$ stronger 'leading particle' effect
- \Rightarrow slower development of CR-induced air showers
Structure of constituent parton Fock states

Crucial test: cross-correlation of $dN_{pp}^{ch}/d|\eta|$ at $\eta = 0$ and $\eta = 6$

• strong correlation for QGSJET-II & EPOS (apart from the tails of the N^{ch} distributions)

• twice weaker correlation for SIBYLL & PYTHIA
Structure of constituent parton Fock states

Now measured: correlation of forward energy (in CASTOR) with central activity (N of charged particle tracks) in CMS

- most important – first 3 bins ($N_{\text{tracks}} < 30$)
- very puzzling results: intermediate between QGSJET-II and SIBYLL?!
 - decisive discrimination not possible?
Further discrimination: forward hadrons by LHCf & ATLAS

Forward π^0 spectra in LHCf for different ATLAS triggers (≥ 1, 6, 20 charged hadrons of $p_t > 0.5$ GeV & $|\eta| < 2.5$)

Compare QGSJET-II-04 (left) to SIBYLL 2.3 (right)

- enhanced multiple scattering \Rightarrow softer pion spectra
 - \Rightarrow violation of limiting fragmentation
- nearly same spectral shape for all the triggers
 - \Rightarrow perfect limiting fragmentation
What about other differences for EAS predictions?

- now largely dominated by model differences for pion-air (kaon-air) collisions [SO & Bleicher, 2016]
What about other differences for EAS predictions?

- now largely dominated by model differences for pion-air (kaon-air) collisions [SO & Bleicher, 2016]
- NB: extrapolation from pp to π-air and K-air is rather constrained in a particular approach
 - do some/all models do it right?
What about other differences for EAS predictions?

- now largely dominated by model differences for pion-air (kaon-air) collisions \([SO & Bleicher, 2016]\)
- NB: extrapolation from \(pp\) to \(\pi\)-air and \(K\)-air is rather constrained in a particular approach
 - do some/all models do it right?
- current indications from UHECR data \((X_{\text{max}} \text{ & } X_{\mu \text{max}})\):
 treatment of pion-air collisions may be deficient \((\text{extra slides})\)
Interpreting PAO data on X_{max} & $X_{\mu \text{max}}$: not self-consistent

How to change models to 'marry' X_{max} & $X_{\mu \text{max}}$ composition-wise?

- the two sets of data should overlap in terms of $\langle \ln A \rangle$
- for $1 \leq A \leq 56$!
Interpreting PAO data on X_{max} & $X_{\mu\text{max}}$: not self-consistent

How to change models to 'marry' X_{max} & $X_{\mu\text{max}}$ composition-wise?

Ancient Greek wisdom may help...

- change a model to modify X_{max} prediction:
 - $X_{\mu\text{max}}$ will move in the same direction!
 - or vice versa
Modifying CR interaction models: which way to go?

Changing the treatment of p–air interactions?

- this impacts only the initial stage of EAS development
- further cascade development – dominated by pion-air collisions
Modifying CR interaction models: which way to go?

Changing the treatment of $p - \text{air}$ interactions?

- this impacts only the initial stage of EAS development
 - further cascade development – dominated by pion-air collisions

 \Rightarrow parallel up/down shift of the cascade profile (same shape)

 \Rightarrow same effect on X_{max} and $X_{\mu\text{max}}$
Modifying CR interaction models: which way to go?

Changing the treatment of \(p – \text{air interactions?} \)

- this impacts only the initial stage of EAS development
 - further cascade development – dominated by pion-air collisions

 \(\Rightarrow \) parallel up/down shift of the cascade profile (same shape)
 - \(\Rightarrow \) same effect on \(X_{\text{max}} \) and \(X_{\text{\mu\mu}} \)
Modifying CR interaction models: which way to go?

Changing the treatment of p – air interactions?

- this impacts only the initial stage of EAS development
 - further cascade development – dominated by pion-air collisions

- \Rightarrow parallel up/down shift of the cascade profile (same shape)
 - \Rightarrow same effect on X_{max} and $X_{\mu\text{max}}$

- \Rightarrow not a way to reach a consistency
Modifying CR interaction models: which way to go?

Changing the treatment of $\pi -$ air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi-\text{air}}^{\text{inel}}$, $\sigma_{\pi-\text{air}}^{\text{diffr}}$, $K_{\pi-\text{air}}^{\text{inel}}$
- \equiv making special assumptions concerning the pion structure
Modifying CR interaction models: which way to go?

Changing the treatment of π–air collisions ("Achilles & Tortoise")

- e.g., $\sigma_{\pi\text{-air}}^{\text{inel}}, \sigma_{\pi\text{-air}}^{\text{dифr}}, K_{\pi\text{-air}}^{\text{inel}}$
 - \equiv making special assumptions concerning the pion structure

- affects every step in the multi-step hadron cascade
 - \Rightarrow cumulative effect on X_{max}^μ
Changing the treatment of π–air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi\text{-air}}^{\text{inel}}, \sigma_{\pi\text{-air}}^{\text{diffr}}, K_{\pi\text{-air}}^{\text{inel}}$
 - \equiv making special assumptions concerning the pion structure
- affects every step in the multi-step hadron cascade
 - \Rightarrow cumulative effect on X_{max}
- but: only the first few steps in the cascade impact X_{max}
 - after few steps, most of energy channelled into e/m cascades
 - \Rightarrow much weaker effect on X_{max}
Modifying CR interaction models: which way to go?

E.g., replacing QGSJET-II by the old QGSJET, for $\pi -$ air collisions

- higher $\sigma_{\pi\text{-air}}^{\text{inel}}$, larger $N_{\pi\text{-air}}^{\text{ch}}$ & $K_{\pi\text{-air}}^{\text{inel}}$

⇒ nearly self-consistent interpretation
Modifying CR interaction models: which way to go?

E.g., replacing QGSJET-II by the old QGSJET, for π – air collisions

- higher $\sigma_{\pi-\text{air}}^{\text{inel}}$, larger $N_{\pi-\text{air}}^{\text{ch}}$ & $K_{\pi-\text{air}}^{\text{inel}}$

- nearly self-consistent interpretation

NB: higher $\sigma_{\pi-\text{air}}^{\text{inel}}$ & $N_{\pi-\text{air}}^{\text{ch}}$ with current models – very challenging

- old QGSJET – outdated; known to overestimate particle production in π – air collisions

- needed: drastic increase of gluon density in pions?!