The study of absolute energy scale of LHAASO detectors

Lingling Ma, Zhen Cao, Xiurong Li, ZhiYong You, Yanjing Wang, Zongkong Zong for LHAASO collaboration
Institute of High Energy Physics, Beijing

ISCRA, Moscow 25~28.6.2019
Content

- LHAASO Experiment
- Get the absolute energy scale by moon shadow
- Test the absolute energy scale by overlap observations with direct measurements.
- Summary
Study the energy spectra of individual cosmic rays from 10TeV sub-EeV with a calibrated absolute energy scale.
Detector Layout in LHAASO

- 1171 muon counters
 - 30 m spacing
- 5195 Scintillator counters
 - 15 m spacing
- 78,000 m² (3000 cells)
 - Water Cherenkov Detector
- 18 Wide FoV Cherenkov Telescopes
Water Cherenkov Detector Array

- Total units: 3600
- Total area 90000m²
- Time resolution: <2ns
- Two type of PMTs
 - 8 inches
 - 1 inch

To increase the energy range 700GeV-10PeV
Information of near core
Wide FoV C-Telescope Array

Fully portable telescopes allow reconfiguring the array easily

- Movable telescope housing
- Rotating from 0° to 90° in elevation
- 5 m² spherical aluminized mirror
- Reflectivity of 85%
- 32×32 SiPM array
- FoV of 16°×16°
- 0.5° pixel
- 1–4000 PE nonlinearity less than 5%
- 4×4 20μm SiPM sub-cluster
- 50 MHz FADC
- Temperature-compensation power supply
- T-stamp from WR network
- Aluminized Winston cones
- Cut-off angle 30° with efficiency of 93%
- Filter transmission of 92% in 310–550 nm

with full-moon duty cycle >30% above 100 TeV
26th April, the first LHAASO detectors was put into operation

- Water Cherenkov detector array with 900 detection units, 22500m2
- Two Wide FOV Cherenkov telescopes
- 180 Scintillator detectors
- 180 Muon detectors

The whole picture of LHAASO on 26th April
Hybrid observation of WCDA and WFCTA

The WFCTA is pointed to zenith to reduce the energy threshold
A hybrid event observed by WCDA, WCDA++, and WFCTA left to right and upper to lower) Air Cherenkov image, water Cherenkov timing map, number of photo-electrons (Npe) map by 8” PMT array, same by 1.5” PMT array, matching of lateral distributions of Npe by two arrays, combined water Cherenkov map of Npe
Get the absolute energy scale by moon shadow

- By a natural magnetic spectrometer
 - The magnetic field between the Earth and the moon
 - The offset of the moon shadow is energy related

Get the offset of the moon shadow
Get the energy scale of the WCDA
Transfer the energy scale by hybrid observation
Get the energy scale of the small PMT and WFCTA

Hybrid observation
Energy scale in experiment

ARGO-YBJ: Moon Shadow displacement

\[N \approx 21 \cdot (E_{\text{TeV}}/Z)^{1.5} \]

1 \text{–} 30 (TeV/Z)

The energy scale uncertainty: smaller than 13%:

- the assumed primary CR chemical composition (7%)
- the uncertainties of different hadronic models (6%)
- statistical uncertainty (8%)
The energy scale of space detectors can be calibrated by energy accelerators.

The space experiments can measure the cosmic ray energy spectrum below 100 TeV very well.

Proton spectrum becomes soft after 10 TeV.

The structure can be used to test the energy scale.

WFCTA is pointed to the zenith to reduce its energy threshold.

The energy threshold is about 15 TeV with single threshold 45 pe and at least 5 pixel after image cleaning.
The energy spectrum @ 10 TeV

- In the energy range, the proton and helium is dominated
- The purity can reach up to 95% of proton and helium
- Information of near core observed by WCDA
- Hillas, Xmax
- The energy resolution at 10 TeV is about 30%
Summary

- By moon shadow, the absolute energy scale of LHAASO-WCDA can be obtained.
- The energy scale can be transferred to the LHAASO-WFCTA.
- The energy scale can be tested by the structure of spectrum at 10 TeV.
- LHAASO can measure the energy spectrum with a calibrated energy scale.
Thanks